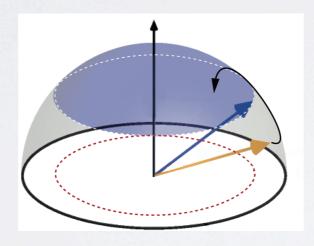
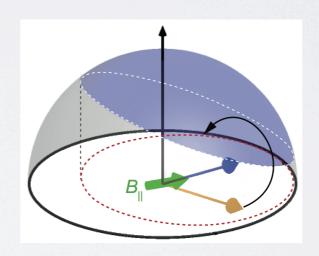
# Control of spin geometric phase in a semiconductor quantum ring



Henri Saarikoski, Regensburg University EP2DS/MSS Conference, Wrocław, 4th of July, 2013









F. Nagasawa, Diego Frustaglia, Henri Saarikoski, Klaus Richter, Makoto Kohda, and Junsaku Nitta (2013)



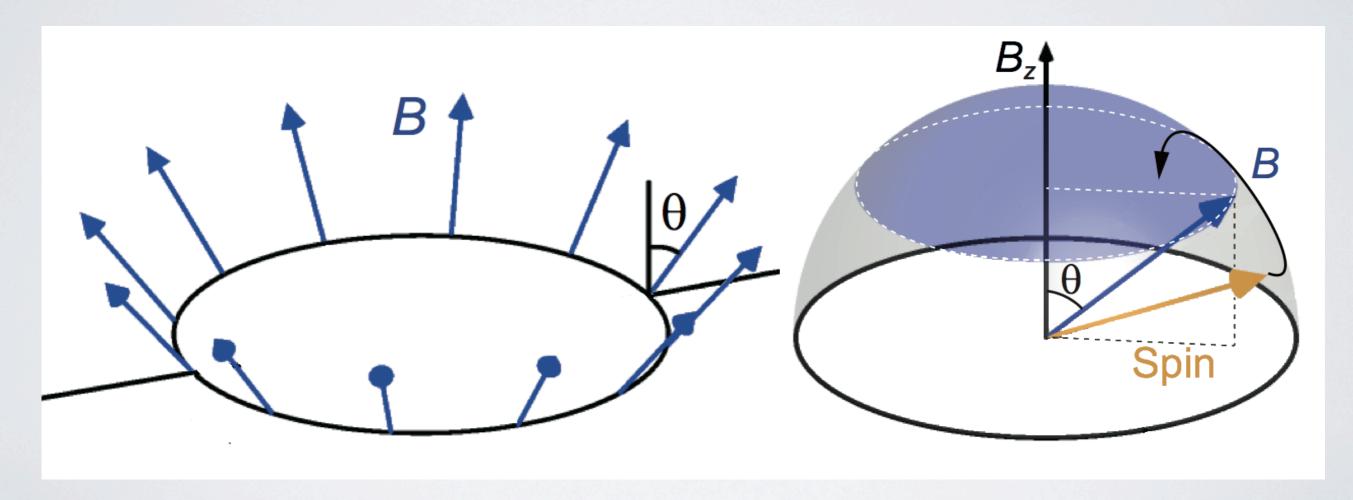
# Geometric phases

Geometric phases arise in wave systems where the parameters of the wave function are cycled around a circuit. (M. Berry, Proc. R. Soc. Lond. A 392, 45 (1984))

Can be observed via interference of waves traversing different paths.

Depends only on the geometry of the path:

robust against dephasing in contrast with the time-dependent dynamical phase.

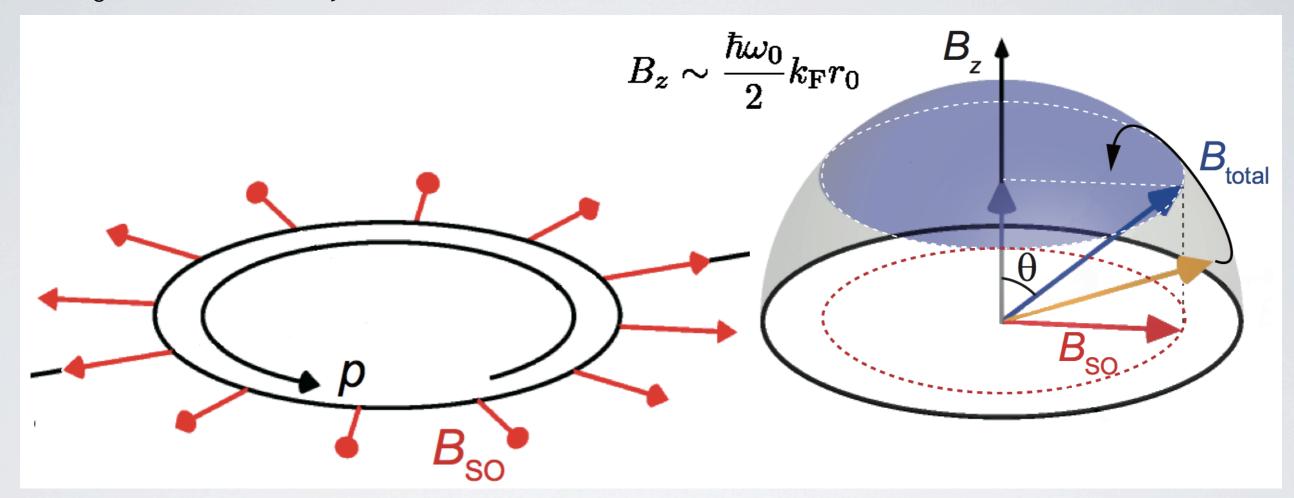


**Dynamic phase**: spin precession around B

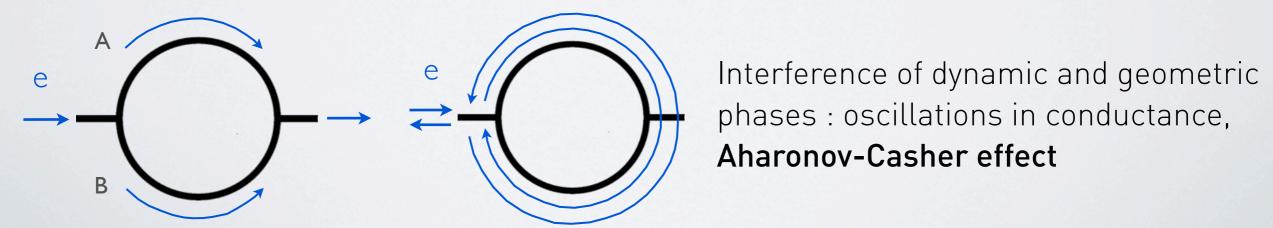
Geometric phase: solid angle subtended by spin eigenstates in B

# Geometric phases in SO-coupled quantum rings

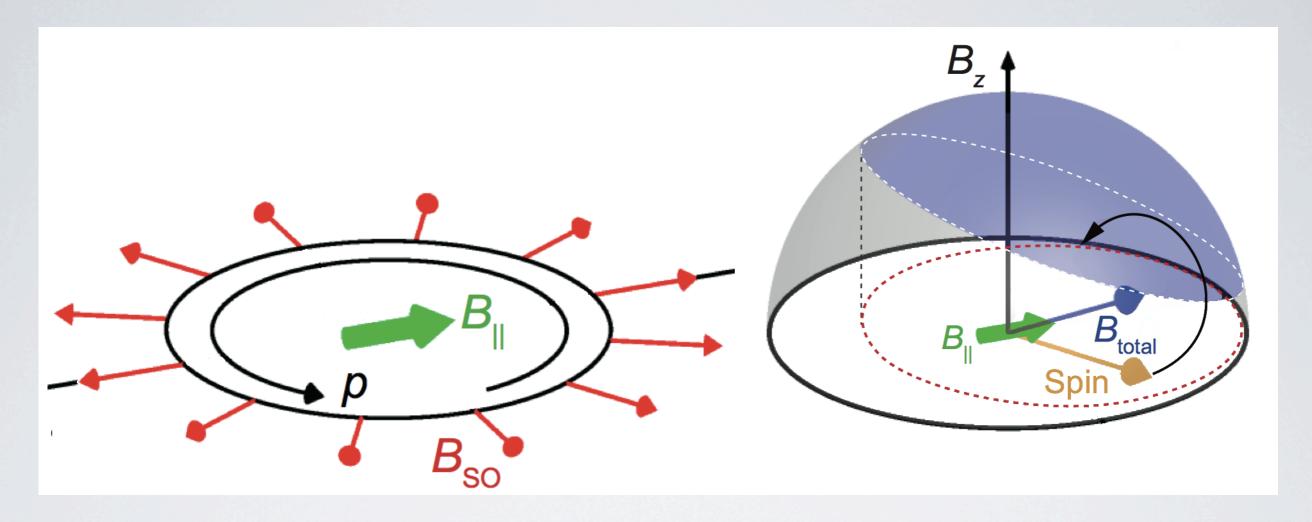
Extracted and studied for electron waves in InGaAs rings F. Nagasawa et al., Phys. Rev. Lett. 108, 086801 (2012)



Aharonov-Anandan geometric phase in non-adiabatic evolution.



# Manipulation of the geometric phase



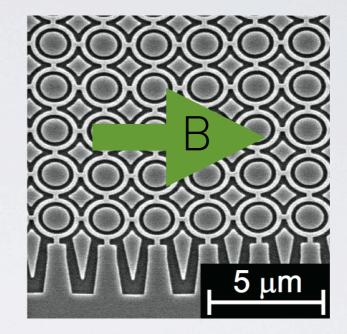
# Interference experiments in quantum rings

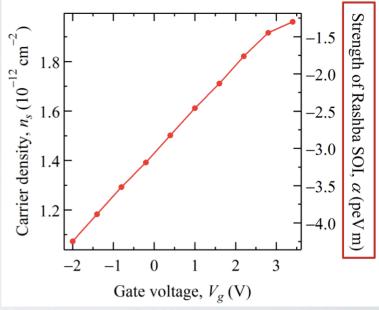
An array of 40 x 40 InGaAs/InAlAs rings multiple interference paths.

Multi-mode rings (~6 modes)

Tuning of the SO interaction with a gate. SdH analysis of coupling strength

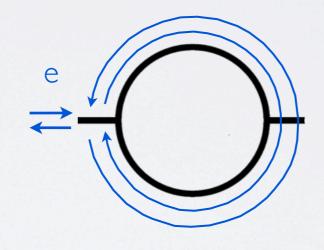
 $\omega_{\text{R}}$  ~ up to 20 GHz ,  $\omega_{0}$  ~ 6 GHz





Quasi-ballistic rings.
Altshuler-Aronov-Spivak (AAS)
conductance oscillations:

interference in a full rotation around the ring in opposite directions



$$\frac{\delta R_{\alpha_{\rm R}\neq 0}}{\delta R_{\alpha_{\rm R}=0}} \propto \cos\left[2\pi\left(\sqrt{1+Q_{\rm R}^2}-1\right)\right] = \cos\left[2\pi Q_{\rm R}\sin\theta - 2\pi(1-\cos\theta)\right]$$
 dynamic geometric

# Geometric phase shift in low Zeeman fields

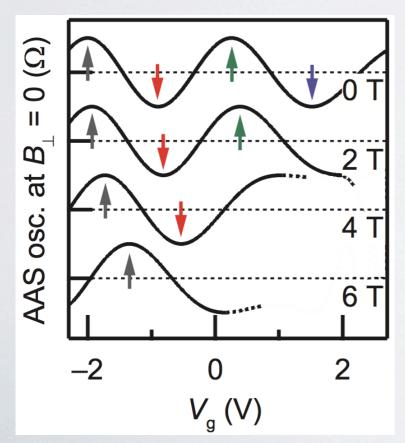
Phase shift, 1st order perturbation theory (D. Frustaglia):

$$\phi = \left(\frac{\omega_B}{\omega_0 k_{\rm F} r}\right)^2 \frac{4 + Q_{\rm R}^2}{4 Q_{\rm R}^2 \sqrt{1 + Q_{\rm R}^2}}$$

$$\phi = \left(\frac{\omega_B}{\omega_0 k_{\rm F} r}\right)^2 \frac{4 + Q_{\rm R}^2}{4Q_{\rm R}^2 \sqrt{1 + Q_{\rm R}^2}} = 2\pi \phi_{\rm AA} = 2i \int_0^{2\pi} d\varphi \langle \overline{n, \lambda, s} | \frac{\partial}{\partial \varphi} | \overline{n, \lambda, s} \rangle$$
$$= -2\pi [(1 - \cos \theta) - \phi - 2j]$$

Pure geometric phase modulation. Independent of dynamical phases

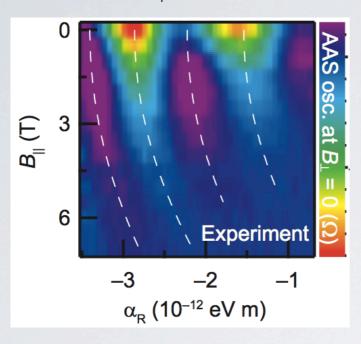
$$G \approx \frac{e^2}{h} \left\{ 1 + \cos \left[ \pi \left( \sqrt{1 + Q_{\rm R}^2} - 1 + \left( \frac{\omega_B}{\omega_0 k_{\rm F} r_0} \right)^2 \frac{4 + Q_{\rm R}^2}{4Q_{\rm R}^2 \sqrt{1 + Q_{\rm R}^2}} \right) \right] \right\}$$

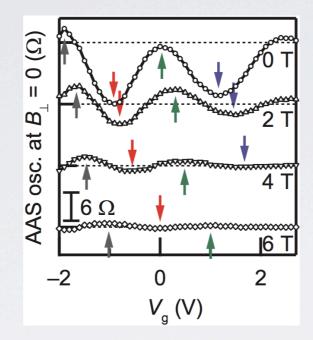


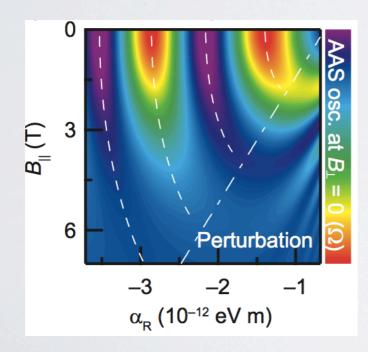
Calculated also for weakly coupled rings F. K. Joibari, Y. M. Blanter & G. E. W. Bauer, Aharonov-Casher effect in quantum ring ensembles. arXiv:1304.6195 [cond-mat.mes-hall] (2013).

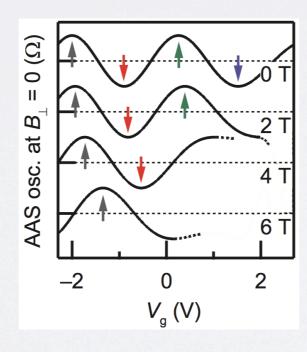
## Dip and peak shifts of AAS oscillations

Quadratic phase shift, decoherence with B

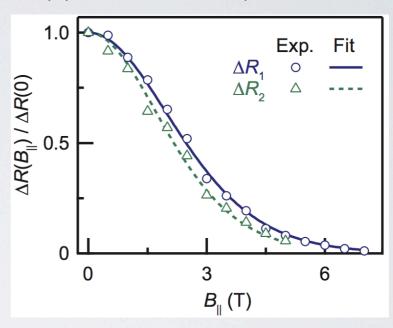








TR symmetry breaking: suppression of spin interference



$$\frac{\Delta R(B_{\parallel})}{\Delta R(0)} = \exp\left[-4\pi r \left(\frac{1}{l_{\varphi}(B_{\parallel})} - \frac{1}{l_{\varphi}(0)}\right)\right]$$

F. E. Meijer, A. F. Morpurgo, T. M. Klapwijk, and J. Nitta, PRL 94, 186805 (2005)

## Computational approach

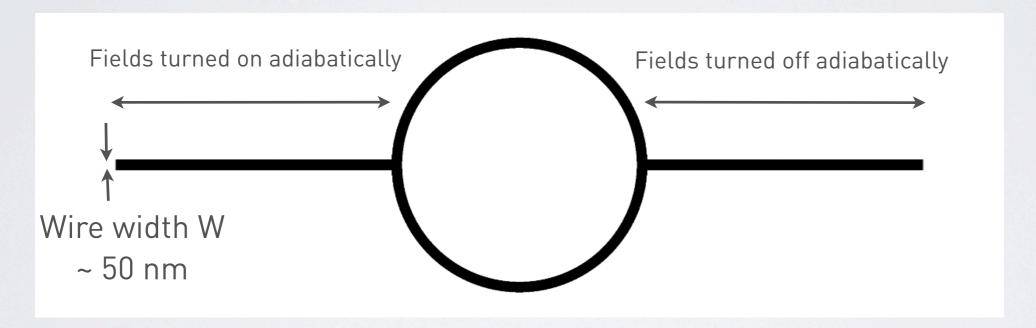
Multiple transport modes, disorder and high Zeeman fields

$$\hat{\mathbf{H}} = \frac{1}{2m^*} \,\hat{\mathbf{P}}^2 + \alpha (k_y \sigma_x - k_x \sigma_y) + \frac{1}{2} g_{\text{eff}} \mu_{\text{B}} B \sigma_x + V_{\text{dis}}(\mathbf{x})$$

Bychov-Rashba SOI Zeeman field

Anderson-like disorder potential

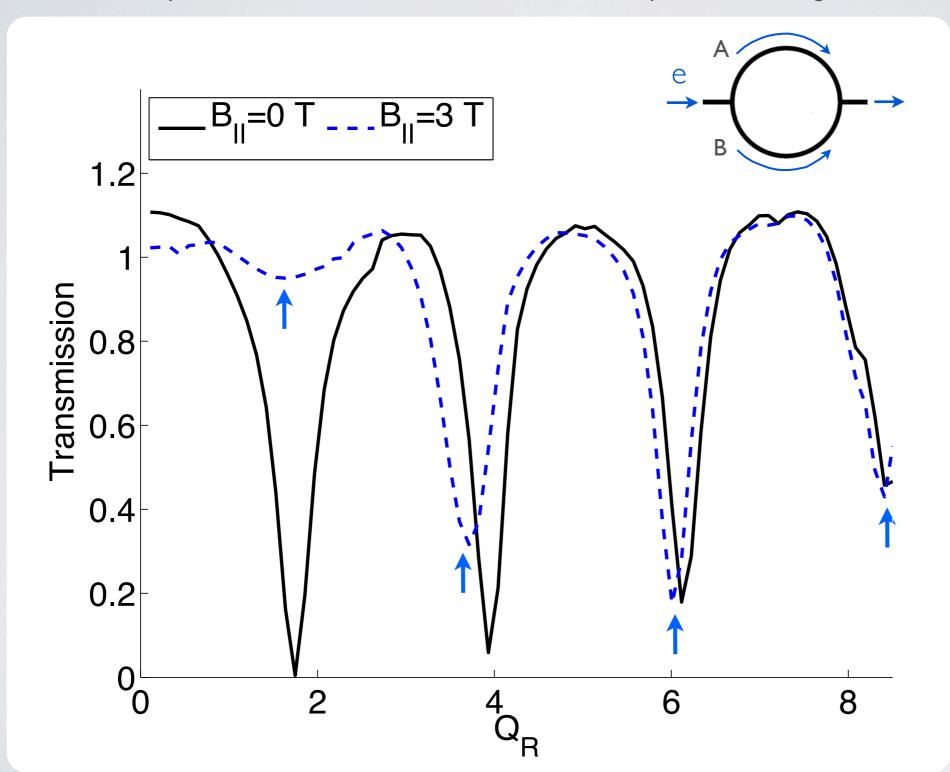
Transport equation solution with the Recursive Green's Function method (RGFM)



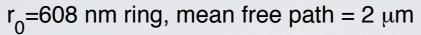
Mean free path in the numerical calculations = 2-6 microns, T = 1.7 K, g-factor = 3, ring displacement 10-20 nm, no Dresselhaus term

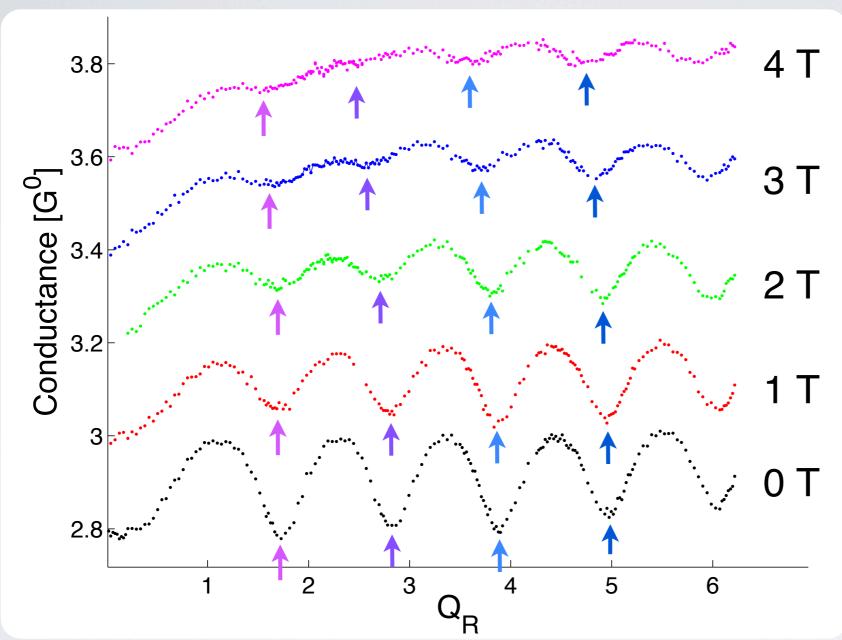
# RQMG method in ballistic rings

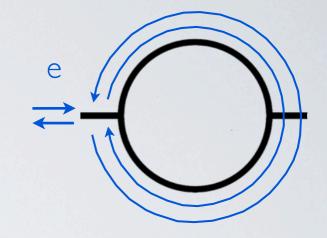
Geometric phase shift for direct interference paths through a ballistic ring.



# AAS oscillations in quasi-ballistic multi-mode rings

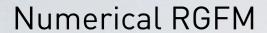


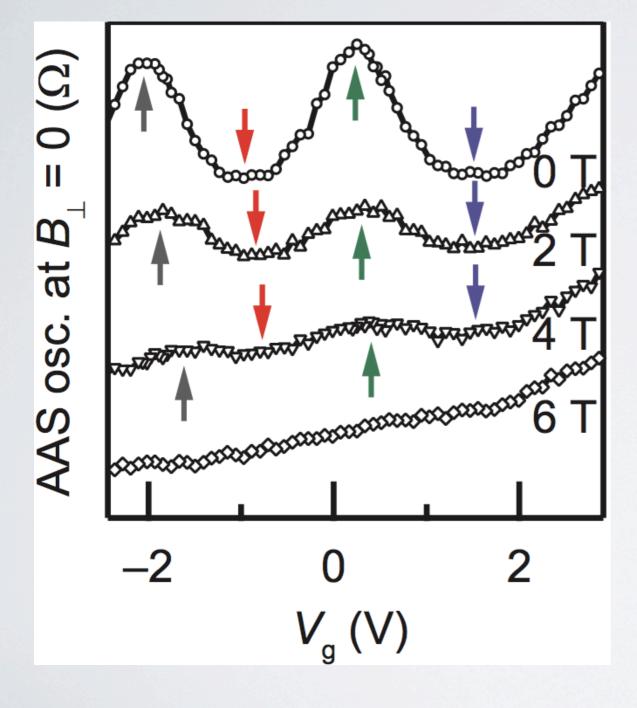




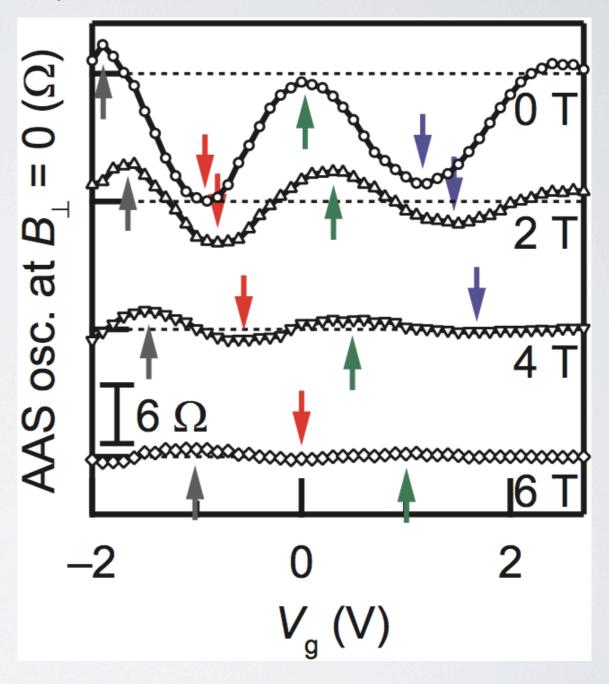
Dips shifts to lower SO fields; an additional phase shift due to the magnetic field.

#### Simulations of AAS conductance oscillations

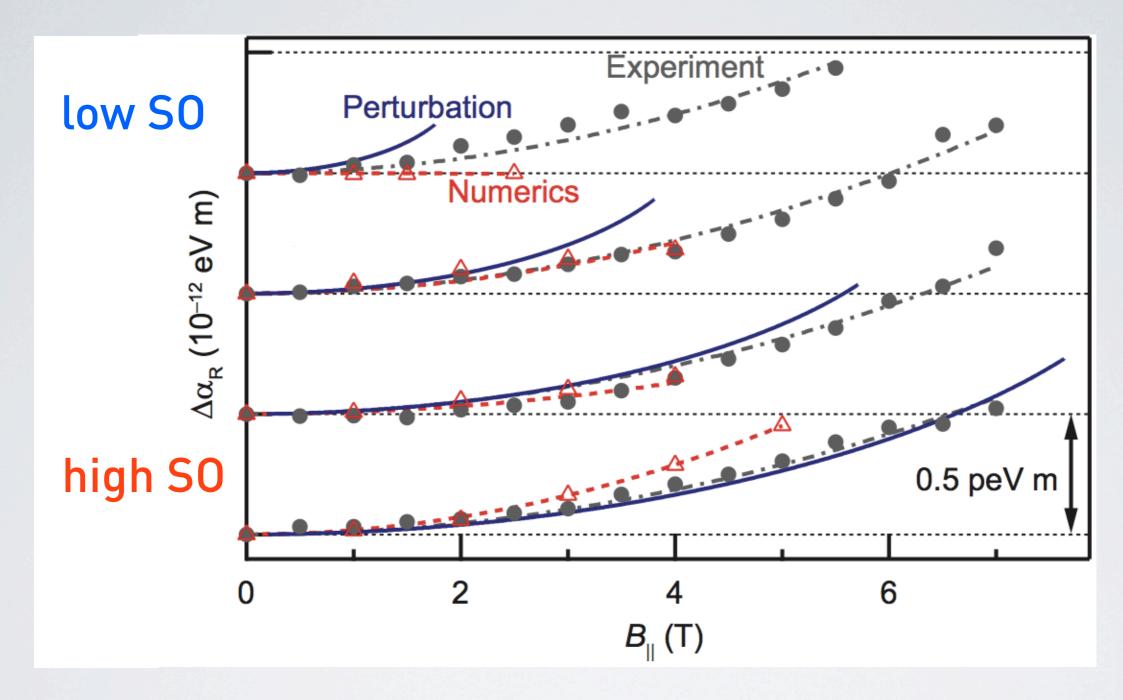




#### Experiments



## Phase shifts: experiments vs. theory



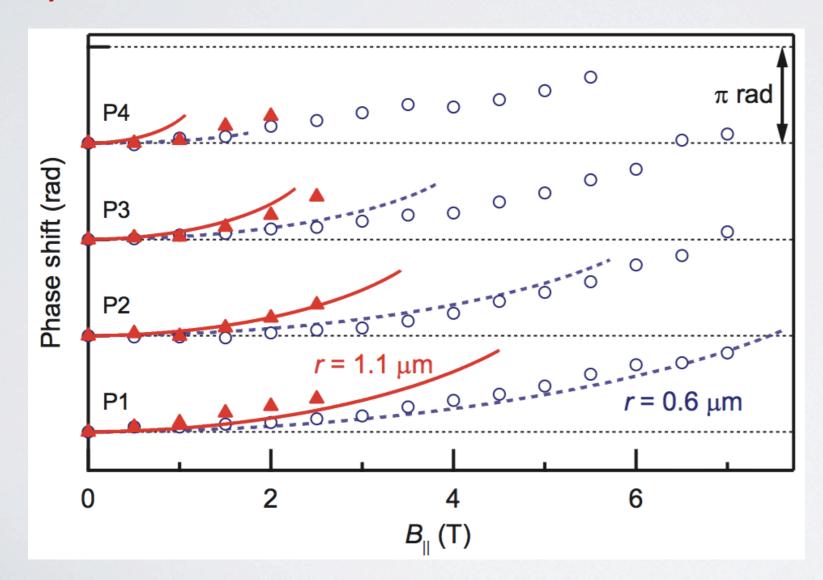
Quadratic shift calculated and observed in experiments

Perturbation theory works fine in high SO fields: phase shift is dominated by a few modes or just the lowest one due to dephasing.

## Radius dependence

Radius dependence 
$$\phi = \left(\frac{\omega_B}{\omega_0 k_{\rm F} r}\right)^2 \frac{4 + Q_{\rm R}^2}{4Q_{\rm R}^2 \sqrt{1 + Q_{\rm R}^2}} \qquad \omega_0 = \hbar/(m^\star r^2)$$
  $\phi \sim r^2$ 

$$\phi \sim r^2$$



Qualitative agreement with the perturbation theory

## Summary

Geometric phase shift with the in-plane magnetic field: quadratic in the in-plane magnetic field strength

Phase manipulation independent of the dynamic phase and without resorting to other geometric phases such as the Aharonov-Bohm phase

Phase shift dominated by a few modes or just the lowest one due to dephasing

#### Collaboration

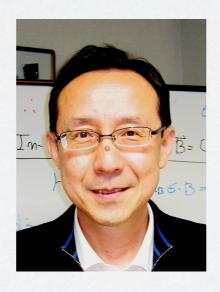
### Tohoku group (experiments)



Fumiya Nagasawa



Makoto Kohda



Junsaku Nitta

#### Sevilla



Diego Frustaglia

#### Regensburg



Klaus Richter