Thursday

Magnetotransport in nanostructured InAs-based High Electron Mobility Transistors

Olivio Chiatti¹, Sven S. Buchholz¹, Christian Heyn², Wolfgang Hansen², Saskia F. Fischer¹

¹Neue Materialien, Institut für Physik, Humboldt-Universität zu Berlin, D-10099 Berlin ²FG Wachstum, Institut für Angewandte Physik, Universität Hamburg, D-20148 Hamburg

The controlled creation, manipulation and detection of spin-polarized currents by electrical means is of high interest. Here we investigate narrow-gap semiconductors with large spin-orbit coupling. Nanostructures can be used to filter specific momentum modes and possibly to create and detect spin-polarized currents [1, 2].

We use wafers with a InAs/InGaAs/InAlAs double quantum well structure [3], containing a shallow two-dimensional electron gas at about 45 nm depth (Fig. 1a). At 4.2 K the carrier density is $n \approx 3 \times 10^{11}$ cm⁻² and the mobility $\mu \approx 1-9 \times 10^4$ Vs/cm² in the dark. We fabricate Hall-bars and quantum point contacts (QPCs) with in-plane gates (Fig. 1b), using micro-laser and electron-beam lithography and wet chemical etching, in order to investigate spin-polarized currents when asymmetric gate-voltages are applied.

The in-plane gates are successfully employed to vary the QPC width and the QPCs show conductance quantization from 300 mK up to 1.8 K (Fig. 1c). Applying asymmetric gate-voltages shifts the onset of the conductance curves and DC-bias measurements indicate a shift in the subband structure. Here, we present the results of our magneto-transport measurements and discuss their implications for investigations of the spin-orbit coupling in InAs.

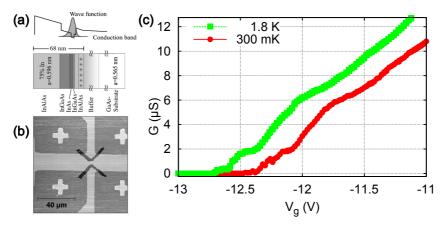


Figure 1: a) Scheme of the layer sequence, conduction band and electronic wavefunction of the wafer (from [3]). b) Atomic force microscopy image of a QPC. The width and length of the constriction are approximately 1.5 μ m and 6 μ m, respectively. c) Conductance G as a function of gate voltage V_q of a QPC similar to b, at two different temperatures.

^[1] R. H. Silsbee, J. Phys.: Condens. Matter 16, R179 (2004).

^[2] P. Debray et al., Nature Nanotech. 4, 759 (2009).

^[3] C. Heyn et al., J. Crystal Growth 251, 832 (2003).