Unconventional Electronic and Magnetic States at the LaAlO₃/SrTiO₃ Interface

Harold Y. Hwang 1,2

¹ Dept. of Applied Physics, Stanford University, USA
² Dept. of Photon Science, SLAC National Accelerator Laboratory, USA

The nature and control of the electronic structure at oxide heterointerfaces is an emerging research opportunity, enabled by modern atomic-scale growth and probe techniques for creating and studying new artificial interface states. Among the many issues that arise, the electrostatic boundary conditions that occur at heterointerfaces are often a very important determinant of the interface properties. This has been extensively studied for the (100) oriented LaAlO₃/SrTiO₃ interface, a novel 2D system exhibiting both magnetism and superconductivity. After introducing this system, we will focus on recent x-ray spectroscopic studies [1] demonstrating d_{xy} ferromagnetism on the interface titanium, which has a number of potential implications for the superconducting state.

[1] J.-S. Lee, Y. W. Xie, H. K. Sato, C. Bell, Y. Hikita, H. Y. Hwang, & C.-C. Kao, *Nature Mater.* DOI: 10.1038/NMAT3674 (2013).